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I.   INTRODUCTION 

In the second half of the 20th century, a considerable number of studies on fractional calculus were published in the 

engineering literature. In fact, fractional calculus has many applications in physics, mechanics, viscoelasticity, economics, 

mathematical biology, electrical engineering, control theory, and other fields [1-14]. However, fractional calculus is 

different from traditional calculus. The definition of fractional derivative is not unique. Common definitions include 

Riemann-Liouville (R-L) fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional 

derivative, and Jumarie’s modified R-L fractional derivative [15-19]. Since Jumarie type of R-L fractional derivative 

helps to avoid non-zero fractional derivative of constant function, it is easier to use this definition to connect fractional 

calculus with classical calculus. 

In this paper, based on Jumarie’s modified R-L fractional derivative, we obtain arbitrary order fractional derivative of the 

following two matrix fractional hyperbolic functions: 

                                                                                                           ,                                                                            (1) 

and 

                                                                                                            ,                                                                           (2) 

where      ,   is a positive integer,   is a real number, and   is a matrix. A new multiplication of fractional analytic 

functions plays an important role in this article. Moreover, our results are generalizations of the results in classical 

calculus. 

II.   PRELIMINARIES 

At first, we introduce the fractional derivative used in this paper. 

Definition 2.1 ([20]): Let      , and    be a real number. The Jumarie’s modified Riemann-Liouville (R-L)  -

fractional derivative is defined by 
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where     is the gamma function. On the other hand, for any positive integer  , we define      
  

 
       

     
       

          
        , the  -th order  -fractional derivative of     .  

Proposition 2.2 ([21]):  If            are real numbers and        then 
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and 
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(5) 

Definition 2.3 ([22]): If     , and    are real numbers for all  ,         , and      . If the function            

can be expressed as an  -fractional power series, that is,         
  

       
      

   
    on some open interval 

containing   , then we say that        is  -fractional analytic at    . Furthermore, if            is continuous on 

closed interval       and it is  -fractional analytic at every point in open interval      , then    is called an  -fractional 

analytic function on      . 

In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([23]): If      . Assume that        and        are two  -fractional power series at     , 
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Then  
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Equivalently, 
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Definition 2.5: If      , and   is a matrix. The matrix  -fractional exponential function is defined by 
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In addition, the matrix  -fractional hyperbolic cosine and hyperbolic sine function are defined as follows: 
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and 
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Theorem 2.6 (fractional binomial theorem): If      ,   is a positive integer and       ,         are two  -

fractional analytic functions. Then 
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where   
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III.   MAIN RESULTS 

In this section, we find arbitrary order fractional derivative of two matrix fractional hyperbolic functions.  

Theorem 3.1: Let      ,      be positive integers,   be a real number, and   be a matrix. Then 
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Proof       
  

 
                    

             
  

 
   

 

 
                     

   

   

        
 

       
  

 
   

 
 
                   

                        (by fractional binomial theorem) 

        
 

       
  

 
   

 
 
                  

      

        
 

  
  

 
 
     

  
 
                 

     

        
 

  
  

 
 
                           

     

        
 

        
 
 
                       

   .                                                                                  q.e.d.  

Theorem 3.2: Suppose that      ,      are positive integers,   is a real number, and   is a matrix. Then 
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Proof       
  

 
                    

             
  

 
   

 

 
                     

   

   

        
 

       
  

 
   

 
 
                   

                         (by fractional binomial theorem) 

        
 

       
  

 
   

 
 
                       

      

        
 

  
       

 
 
     

  
 
                 

     

        
 

  
       

 
 
                           

     

        
 

             
 
 
                       

   .                                                                                  q.e.d.  

IV.   CONCLUSION 

In this paper, based on Jumarie’s modified R-L fractional derivative and a new multiplication of fractional analytic 

functions, we obtain arbitrary order fractional derivative of two matrix fractional hyperbolic functions. In fact, our results 

are generalizations of classical calculus results. In the future, we will continue to use Jumarie type of R-L fractional 

derivative and the new multiplication of fractional analytic functions to solve the problems in engineering mathematics 

and fractional differential equations. 
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